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The present paper deals with the spatial distribution of the electrostatic poten- 

tial in a channel with two electrodes in the presence of the Hall effect. The 
velocity profile is inhomogeneous and corresponds to the velocity diminishing 
down to zero at the channel walls, The problem of determining the electric 
field in the channel is reduced to that of solving a boundary value problem with 

mixed boundary conditions for an elliptic type equation. One of the versions of 
the Wiener-Hopf method is used in the course of solution. 

The three-dimensional distribution of the electric field in a MHD channel 
has been studied, because of considerable difficulties of mathematical nature 
encountered, only for the simplest cases of isotropically conducting media, i. e. 
for the cases when the walls have uniform conducting properties, or when an 
electrode zone is present in the channel [l- 71. For the anisotropic conductiv- 
ity of the medium only plane problems have been studied [8, 91. 

1. The cana of gemi-infinite electroden. 1’. Let us consider a flow 
of a viscous. incompressible, anisotropically conducting medium in a MHD channel ofrec- 
tangular cross section 1 z 1 < co, ( y 1 < 0, 1 z ; < I, in an external homogeneous mag- 
netic field Ho (0, Ho, 0), Ho = con&. For y = z!z b, the channel walls are insu- 
lators, while the other two walls (z = + 1) are insulators for x < 0 and perfectly 
conducting electrodes for 5 > 0. The velocity of the medium is 
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v== f?&, 0, O), 
k -0 

h, .= h / b, 2,; (& 1) .= 0, 2, (2) - 2, (- z) 

The distribution of the electrostatic potential cp = cp (,x, 11, Z) and the current den- 

sity J = J (2, ?/, z) (under the assumption that Rent < 1) are determined from the 
system [lo] div j = 0 

J=a[-VT-J-vx H~J-~[jx~r~] (f.1) 

(where p is the Hall’s parameter), with the following boundary conditions : ill = 0 at 
the insulators and cp 1=; const at the electrodes. Thus the electrostatic potential ‘p (.n, 

1/+ 2) satisfies the boundary value problem 

where 2~, is the potential difference between the electrodes. A unique solution of the 
problem (1.2) can be obtained only if the conditions at the edge x = 0, z = t 1. 

are specified. Let [8] 

We write the potential rp to be determined in the form 
(0 G e < l/2) 

cp@, ?A 2) = rp,(? s> + 5 1pk(5, z)cos~&*, h,+ (1.4). 
k=l 

In this case the functions uk. (cc, z) (k = 0, 1, 2, . . _) are solutions of the boundary 
value problems with the mixed conditions 
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%i = f Uke, z=.l, x>o 

Uke = H, 5 (-I)” .,;A: Ak2 (k # 0) 
71=1 -1 

We assume that the auxilliary potential zzk (5, z) satisfies the conditions at the edge 
of the type (1.3) as well as the conditions 

[ukI<cleT+x, -c+>O, ~---oo 

1 uk I< cZer-x, T_ = 0, z ----f $- 00 (1.6) 

2’. Let us apply the Fourier transformation to (1.5) 
i++CC 

0 (a, 2) = a+ (LX, 2) + CD_ (CL, z), ulr (s, 2) = -&- $ CD (3, z) e-i”Xda 
i+--m 

CD_ (a, 2) = 5 uk (x, 2) eiaxdx, CD+ (a, 2.) = f uk (x, 2) eiaxdx (ci = ~5 $ iz) 

--oo 6 

Here and in the following the plus subscript denotes that the given function is regular 
in the upper semiplane T > z_ and the minus sign denotes the function regular in the 
lower semiplane ‘G < z+ Then we obtain the following problem for the function @(cc, 
Z) (the prime denotes the derivative with respect to 2): 

CD” (a, 2) - yam (a, 2) = 0, y2 = a2 + Ah2 (1.7) 

CD_’ (a, * 1) = p [Uk (- 0, + 1) - ia@_ (a, * 1)I 

@+ (a, + 1) = * u.ke / ia 

Eliminating the unknown A (a) and B (a) from the relation 

CD (a, z) = A (a) ch yz + B (a) sh yz 

and using the boundary conditions (1.7) we obtain the following initial system of func- 
tional eauations 

$+(-) - iapA_(u) - K (a) A_ (a) = ““etff;‘“’ (1.8) 

(Y” + a2B2)A_ (a) + iag Y, (a) - K (a) a+ (a) = fluke K (a) 
where 

K (a) = y cth y 

9, (a) = ‘/2[@,’ (a, 1) + @+‘(a, -I)1 + p-” [u, (-0, 1) + Uk (-0, -I)] 

A- (a) = l/d@ (a, 1) +@ (a, -I)], ~_(a) = v,[@_ (a, I) - CD_ (a, - I)] 

a+ (a) = l/2[@+’ (a, 1) - @+’ (a, -I)1 + p-2ru, (-0, 1) - Uk (-0,-l)] 

The system (1. 8) is valid in the strip T_ < r < ‘G+, while A_ (a), $+ (a), A_ (a) 
and a+ (a) serve as the unknown functions. 

3’. Let us now solve the system (1.8) using the Wiener-Hopf method. Factorization 
of the function K (01) is known [ll] 
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K (Lx) = K,+ (a) K,- (a) (f-9) 

K,f (a)= jjl ;; + y&ym ) K,-(a) = K,+ (- a), pn = nn 
m 1 /Pm 

We note that for k = 0 , the factorization of K (a) can be written in terms of the 

gamma function 
I&- (a) = K,+ (- a) 

The functions Ks+ (a) are regular and have no zeros when Im a > - n/2, more- 

over K,+ (a) - \ a 1 ?‘p for a j co in the upper semiplane. 

Let us multiply the first equation of (1.8) by 1 / K,+ (a) and the second one by 
1 / Ki (a), Grouping the terms in the usual manner according to Wiener-Hopf method, 

we obtain 

X n k = ++ &%kh ?hk = A_ (- i%k)? t:k = f.b,’ $ hk2, $k = Yn2 $ ?&k2 

The functions apprearing in the left-hand sides of these relations are regular in the up- 
per semiplane z > z_ and those in the right-hand side are regular in the semiplane 
partially overlapping the previous one 2 < ‘G, (r_ < ‘G+). Therefore each of these 

functions is, when considered separately, an analytic continuation of the other function, 
and together they form a single entire function. According to the generalized Liouville’s 
theorem, 

/jj iynkKk+(isnk) _ uke;- (0) ;;@)) 
&k $_ Q 

= p, (4 (1.10) 

(72 + r-43”) _&& _ fj 2 
= pn (a) 

n=1 

@‘tf;t_lizk) 

The powers of the polynomials P, (a) and P, (a) are determined by the asymptotic 
behavior of each function in (1. 8). Using the conditions (1.3) at the edge, we can show 
that P, (a) E 0 and P, (a) = p (= const). Let us define the constant y as fol- 

lows : 

because the function A_ (a) determined in (1.10) is regular in the lower semiplane 
z < z,. Consequently we have 
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(1.11) 

bet us now set u = isnlk in the first relation of (1.11) and a = - is,,in the se- 
cond relation. Then the following system of infinite algebraic equations is obtained for 

Xnk and Ynk 

“mk 
45 

Y,kKk+ @,k) UkeKk- (0) 
=cI- 

Kk” (%nk) n=l Snk + %k Smk ’ 
M 171, 2, . . . (1.12) 

Having obtained the functions $+ (a) and A_ (a) we can find the transform @ (a, 

(3-l (a, 4 = - uke Kk- (a) Sk (a) ch TZ 
- - +p + aapa 

ch T 
iap 2) + Kk+ ta) Rk (a) $f$] 

Rk (a) = _ Krr to) ta +’ ’ iYfikKk+ (iSnk ) 

n=1 
&&+a 

Sk(a> = P i %kKk+ @nk) ( Snk ; ia - * 
n=l Snk + a1 

) 

We perform the inverse Fourier transformation. Then the required distribution of elec- 
trostatic potential (1.4) has the form 

((3 COS V’,z - sin V,z) 1 (1.13) 

PS, (We 
= x 
' 

i&h !.klKk+(ial) 
(ch @zlz + sh &z) + 

for the region z < 0 and 
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for the region x > 0, 

4O. Next we consider the infinite systems (LIZ). We replace ~,k and 2fnk by 

intr~uc~ng new unknown * “nk 

xnk = - uk”juk-(o) * 

y;k = _ %k (%k + w 

ukeKk- (0) 

For the latter we obtain from (1.10) a system which, when solved for each unknown, 
yields two infinite systems of equations of the following form : 

m 

Xm = z: Cm,% -I- 6, (1.15) 
7W=l 

where 

The systems (1.15) are completely regular for any 0 < 0 < 00. This follows from 
the estimate 

5 
7l=l 

The above estimate was proved using the equation 

obtained while computing the following contour integral [ 11 f with the aid of the theory 
of residues : 

f_(a) = - & 1 $‘C’;” , t<o i 
--w 

where 
f_ (r$) _- 1 / R,- (cc), cf. = - iS?lk 

The free terms b,,, are bounded within a set, consequently the solution of (1.15) can be 
obtained by the method of reduction or the method of consecutive approximations p2]. 

Moreover, it can be shown that the inequalities &,&t > a&k and &k-l > r~;(,~. 
are valid. 

2, The case of ffnits eleCtredet. We consider, as before, a rectangular 
channel 1 3 1 < 00, 1 y 1 < b, ( z 1 < 1 the walls of which are nonconducting eve- 

rywhere except for two symmetrically placed electrodes z = zrf 1, 1 x1 < a. The 

boundary value problem is written in the form 
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PU, 

-+ 
asuk 

ax2 - - hk%Lk = 0 a22 

Applying the Fourier transformation in 5, we obtain the following system of functional 
equations : 

(a2fi2 + ?“)A+ (a)eiaa + iaBR, (4 - K (a)$~ (a) -t- 

(a”f3” + y2)A_( a)e-iaa = - 2ifJK (a) sincza 

(a”fi” + r2) A+ (a) eiaa + i4JSo (4 - y2R, (4/K (a) + 

(a”$” -!- y2)h_ (cc) e-iaa = y2cC1 sin a 

(2.2) 

for the unknown functions 

AL- (a) = 1/2t@t (a, 1) + @‘-r- (a, - I)] 

At, (a) = 1/2[@+ (a, 1) - CD* (a, - I)1 

Ro (a) = ‘/a [@o’ (a, 1) + @o’ (a, - I)1 - l12peiaa[uk (a + 0,l) + 

uk (a f o 1- I) + 1/2kisa hk (-a - 0, i-1) + Uk (-U-O,- I)], 

SO (4 = l/2 I@‘0 ( a, I) - @o’ (% - 1) - l/2 peeiaa [Uk (a + 0, 1) - 

Uk (a + 0, - 1) + l/g@+aa [Uk (- a - 0, 1) - Uk (- U - 0, - I)] 

where 

@_ (a, z) = 7 uk (t, z) eia(+a) dx, cI+, (a, z) = f z+ (x, z) eiards 
--CT -a 

0, (a, 2) = $ uk (2, 2) eiz(x-a) dx 

Equations (2.2) are valid in the strip ‘t_ < ‘G < r,, the functions A+ (a) and A+ (a) 

are regular for ‘G > r_, A_ (a) and A_ (a) are regular for ‘G < T+, while S,, (a) and 
R,, (a) are entire functions. The function K (a) = K, (a) K_ (a) is defined by rela- 

tion (1.9). Equations (2.2) are solved using a method given in [ 133 generalized to em- 
brace the case of systems of functional equations. The computations are cumbersome 
and the solution is therefore not given here. We shall just mention that it agrees to within 

the terms of the order 0 (e-2na) with the approximate solution which can be obtained 
in the following manner. 

The solution (1.13),(1.14) for the entry zone can easily be transformed into a solution 
corresponding to the exit zone. To do this, it is sufficient to change the signs of the Hall 
parameter and of the variable x in the solution indicated. We therefore have the follow- 
ing approximate solution of the problem for the channel with finite electrodes of length 

2a:’ 
cp,,(x, z) = H, *Z,(z)dz - 

s 
0 

&a[“p i %oK~a(%) + 

7X=1 
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jl (- ‘,‘” zm e”J=+‘) (sin v,z q= p cos V$)] 
?I 

‘pk(“, 2) = - ; u$-;z - Ulre 
72=1 k 1 +P” [ 

ps, (iu,) eal(a-lx’) 
2 sh &zIK~+ (ial) (sh &z Z!I 

O” 

ch Pw) + 2 

(- l)y.L$k (itnk) etnk@+‘) 

n=l t,,kKk+ (itnk) @,ka - aI’) 
(P&k sin pnZ I!I cos p,,z) - (2.3) 

for the region 15 1 > a (here the upper sign corresponds to the region 5 < - a) and 

cpo(s, z)= H,[Z,(z)dz -uoeb + 2 (- l)n2yn,,e-vnnsh v,xcosv,z - 

0 n=1 

2Ro (-- icl,) _I* a 

TL==l 
Ko+ WJ 

e n sinp,zchp,x 
3 

'p&, 2) = - H,, r, '$;;;; - uk'[$$ + 

n=1 h k 

(2.41 

i (- 1)” F e?nka sh snkx cos V,Z - 

?I=1 nk 

2 (- l)“-- 
2!$Hk (- i&J -t .a 

tnkKk+ (Qnk) 
e nh ch tnkxsinp,z 

1 n=l 

for the region 1 z 1 < a 

8. Effect of the rnitotropy of the conductivity of the medium 
on the fntegrrl chrrrcterf8tlcr of the three-dfmenrionrl channel. 
In computing the integral characteristics of the channel we shall limit ourselves, for 

definiteness, to considering the following velocity profile 

Here 6 > 0 is the profile-leading parameter and ut, is the velocity averaged over a 

cross section. We also assume that the MHD channel works in the generating mode and 
the length of the electrode zone is not less than the distance between the electrodes. 
Thus the distribution of electrostatic potential is defined by (2.3) and (2.4) with the 
accuracy of up to the terms of the order 0 (em*“) . The integral characteristics sought 

are: the potential (Pi at the electrodes, total current and power through the external 
load R, the Joule dissipation and the efficiency (efficiency factor) of the generator 
channel. The potential at the electrodes can be expressed in terms of the load coeffici- 
ent k in the following manner: qe = h&f,, and the total current I flowing through 
the electrodes into the external network is computed by the formula 
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a b 

I= s j ~z(“*Y~~)~~~!J= $ % j,(x,y,-l)dxdy= 
--a-b 

--a -1~ 

+y$ (1 -k) (a + 0.441 + p 2 y,, 

iZ=1 VT2 1 
where the current density iz (CC, y, z) is determined from (1.1). Then the expression 
for the power N and the Joule dissipation Q in the channel can be written in the form 

N = %‘,I = 

Q = s -1'2 6 1 dD=-A’-- [jxH]vdD=Q,+AQ 
s 

Ll Ll 

Q* =_2 k2 
4a*bHo2u02 

w + 2 (1 _ k) k - 0.054 _1- .j$?$ (1 - ?@-‘)) - p i &!- PZ (v,) 

n=1 n n=1 V?a3 

o = 2ba*R, Pz (v,) = 0.208~~~ - 1.323~~ - 3 

g H&,a + o (6-s) + Ho2 i 2 ($ cth & + th 1, - 2A,) - 

k=l ‘kb 

HoaL s “[++ 
k=l ‘ka 

i dK- 
- L(O) K,- (0) + 
hkZ da 

K,+ (ihk;;sKk- (i 'k) Kk- (0) _ $j +& (1 _ e-(~-=)%k) _ 

k n=1 nk n 

where Q* denotes the Joule losses in a plane channel (8 - CO) due to the longitudinal 
edge effect only, 2L is the generator channel length (L > a), and AQ is the dissipation 

2 P 
Fig. 1 

increment due to both,the longitudinal 
the transverse flows. 

Fig. 2 

and 



448 V.Kii.Klrlllov 

The generator efficiency (efficiency factor) is found from the formula 

n==NI(N+Q) 

Figures 1 and 2 depict the dependence of the power (IV, = N ,I (48~~~zU~~)) and the 

efficiency factor of the channel on the Hall parameter, for certain values of the load 

coefficient k, with the solid lines corresponding to the gee-dimensional channel of 

length L = 4a and 6 = 100, and the broken lines corresponding to a plane channel. 

Table 1 gives a solution of the infinite system of equations (1.15) for (k = 0). 

n 

x,0 

0.1 

1.005 
0.504 

B 

f I 3 

1.367 2.131 
0.831 1.528 
0.683 1.338 
0.605 1.227 
0.553 f.150 
0.515 1.091 

o&o :*4:! 
1.043 
0.968 1.003 

0.423 0.938 

5 

2.359 
1.737 
1.534 
1.414 
1.329 
1.264 
1.211 
1.166 
1.127 
1.093 

n 

Y,10 
Table 1 

a 

0.379 
0.316 
0.277 
0.249 
0.229 
0.199 
0.196 
0.188 

0.063 0.467 0.469 0.448 
0.052 0.400 0.413 0.344 
0.046 0.362 0,381 0.302 
0.042 0.336 0,357 0.277 
0.039 0.316 0.339 0.260 
0.037 0.300 0.325 0.246 
0.035 0.287 0.313 0.236 
0.034 0.276 0.302 0.227 
0.032 0.267 0.293 0.219 
0.031 0.258 0.285 0.212 

Thus the presence of anisotropic conductivity in the medium affects the integral 
characteristics of the MHD channel unfavorably. As in the case of a plane channel DO], 
the edge losses near solid electrodes increase appreciably with the increase in the value 

of the Hall parameter p. 
In concl~ion the author thanks L. P. Chegirin for kindly solving the infinite system of 

algebraic equations (1.15) on a computer, and A. A. Kaspar’iants for continuous interest 
in this work. 
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A variational problem is considered of constructing the generatrix of a plane or 

axisymmetric body guaranteeing the minimum wave drag in an inhomogeneous 
(nonisentropic and nonisoenergetic) supersonic flow of an ideal gas (inviscid and 
non-heat-conducting) in the case when the domain of determinacy of the un- 

known contour contains a zone of sharp variation in the values of parameters 
which are retained (in the absence of jumps) along the streamline, the parame- 
ters being the entropy and the stagnation enthalpy. In the limit the zone dege- 
nerates to a tangential discontinuity. The investigation is limited to the confi- 

gurations (e. g. nozzles or the stern parts of the bodies) for which no shock waves 
(this includes the bow shock) exist in the region under investigation. It is estab- 

lished that the solution [l, 21 obtained earlier for inhomogeneous flows and 
yielding a smooth optimal countour (without internal corner points) cannot be 
realized in such cases and must be replaced by a solution in which the generatrix 
of the optimal body contains at least one internal corner point. Since the me- 
thod of passing to the control contour utilized in [l, 21 cannot be applied to the 

study of such configurations, the necessary extremal conditions determining the 
form of the optimal generatrix must be obtained using the general method of 
Lagrange mulipliers in the form developed in [3 - 51. The conditions of optimal- 


